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RESEARCH ARTICLE

Deepening transparency about value-laden assumptions in energy and
environmental modelling: improving best practices for both modellers
and non-modellers
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aElectric Power Research Institute, Palo Alto, CA, USA; bEnvironmental and Occupational Health, Population-Level Bioethics, and
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ABSTRACT
Transparency and openness are broadly endorsed in energy and environmental
modelling and analysis, but too little attention is given to the transparency of
value-laden assumptions. Current practices for transparency focus on making model
source code and data available, documenting key equations and parameter values,
and ensuring replicability of results. We argue that, even when followed, these
guidelines are insufficient for achieving deep transparency, in the sense that results
often remain driven by implicit value-laden assumptions that are opaque to other
modellers and researchers, and that may not be understood by wider audiences to
be controversial. This paper identifies additional best practices for achieving
transparency by highlighting issues where disagreement over value judgements will
persist for the foreseeable future. Recommendations for deepening transparency
are developed by learning from successes and ongoing challenges represented in
three case studies. We provide recommendations to accelerate the adoption of
additional best practices for deepening transparency of energy and environmental
modelling in policy-relevant domains, increasing stakeholder participation with
non-modellers, and encouraging interdisciplinary dialogue.

Key policy insights
. Achieving all of the goals associated with transparency requires more than current

practices of providing open source data, code, and model documentation.
. Greater interdisciplinary dialogue could improve transparency beyond current

practices, including in model development, application, and communications.
. Better practices for addressing contentious and value-laden assumptions include

providing accessible documentation for non-specialists, increasing policymaker
participation to ensure that model outputs can inform questions, and
performing sensitivity analyses that cover a range of reasonable views about
value-laden assumptions.

. Energy and environmental modellers should account for audience-specific
considerations to promote transparency, especially accounting for needs of non-
modellers such as policymakers.
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1. Introduction

Important societal issues increasingly require interdisciplinary collaborations and are being informed by quan-
titative modelling. For instance, with growing pressure to mitigate climate change while achieving the
broader UN Sustainable Development Goals (SDGs), many climate and energy modelling groups are
making their data and equations public (Hurrell et al., 2013; Pfenninger et al., 2018). While this added trans-
parency can improve the scientific process as well as public trust in science, this paper argues that deepening
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transparency – beyond making data, equations, and model documentation merely openly available – is
needed to address value-laden assumptions that may not be apparent to non-modellers. It presents three
case studies to both illustrate best practices and identify opportunities for confronting value-laden assump-
tions in models. For our purposes, value-laden modelling assumptions involve taking concrete answers to
contentious ethical questions for granted. Ethical questions could include whether and how to discount
future goods, how to make decisions under uncertainty, and how to account for inequality, as discussed in
Section 2.

Transparency is widely endorsed as a goal in energy and environmental modelling (Pfenninger et al.,
2018; Schneider, 1997), as well as in interdisciplinary research across the natural and social sciences.
Current practices for transparency focus on making model source code open access, documenting key
equations and parameter values, providing data, and ensuring replicability of results (DeCarolis et al.,
2012, 2017). Several recent papers recommend how quantitative researchers in energy, sustainability,
and other scientific fields can make data, equations, and major assumptions transparent to other research-
ers (e.g. Bistline & Merrick, 2020; Craig et al., 2002; DeCarolis et al., 2012, 2017; Ha-Duong, 2001; Ince et al.,
2012) as well as to policymakers and the public (e.g. Pfenninger et al., 2018).1 Open-source software and
crowdsourcing are more familiar within ecology (Benz et al., 2001; Grimm et al., 2006) and genetics, but
are becoming increasingly common in climate science (Hurrell et al., 2013), energy (DeCarolis et al.,
2012), and social sciences (Christensen & Miguel, 2018; Gertler et al., 2018). While several studies stress
that these recommendations are but a first step towards improving transparency, the energy and environ-
mental modelling literature tends to focus on transparency for other modellers (DeCarolis et al., 2012; Ince
et al., 2012; Peng et al., 2014). Additionally, the U.S. Environmental Protection Agency’s proposed rule
‘Strengthening Transparency in Regulatory Science’ aims to ‘ensure that the data underlying [scientific
studies] are publicly available in a manner sufficient for independent validation’ (U.S. EPA, 2018).
However, the proposed rule focuses on the availability of data and source code, which may be insufficient
for making value judgments explicit.2

Indeed, several key contributions to best practices in energy modelling rarely, if ever, mention value-laden
judgments in recommending improved transparency in energy and economic modelling (DeCarolis et al.,
2012, 2017; Pfenninger et al., 2018; Strachan et al., 2016). Although these first steps toward improving transpar-
ency can be informative for modellers and help build social confidence, we argue that they are insufficient for
achieving what might be called ‘deep transparency’, which requires making structural assumptions explicit,
creating opportunities for interdisciplinary engagement, and explicitly communicating value-laden assumptions
to stakeholders. Because value-laden assumptions are not merely hidden assumptions that can be made explicit
by providing model source code and documentation, as DeCarolis et al. (2012, p. 1847) suggest, we argue for
deepening transparency. We use ‘deepening transparency’ to signify improvements along multiple dimensions
that are relevant not only to modellers but to broader stakeholders who use model results to make policy
decisions, run businesses, allocate resources, or communicate risk.

Consumers of model outputs are increasingly audiences such as policymakers, industry, researchers in other
disciplines, and foundations who may not necessarily have the background or resources to explore source code
or run models (Rose & Scott, 2018). Yet, these audiences have a stake in understanding the structural and value-
laden assumptions that informmodel results. This limitation underscores the importance of deepening transpar-
ency strategies such as increasing stakeholder participation (Reed, 2008) and comprehensive sensitivity analysis
with large ensembles of scenarios across a range of uncertain parameters (Morgan & Henrion, 1990). Rec-
ommendations to deepen transparency are important not just because they provide insights about ‘black
box’ models (and how model outputs change as assumptions change). Deepening transparency also reminds
audiences that the model building and analysis process is a series of choices that embody values, malleable par-
ameters, and uncertain system dynamics.

This paper proceeds as follows. Section 2 describes case studies for deepening transparency about value-
laden assumptions related to discounting, uncertainty, and distributional impacts. Section 3 builds on insights
from the case studies to provide recommendations to accelerate transparency best practices. Section 4 con-
cludes by discussing policy implications.

2 J. BISTLINE ET AL.



2. Case studies of deepening transparency for value-laden assumptions

The literatures on energy and environmental policy analysis provide many examples of opaque modelling
assumptions with consequential impacts. We draw on work on transparency in energy and environmental mod-
elling that predates the now influential open-source movement (Funtowicz & Ravetz, 1993; Oreskes et al., 1994;
Proctor & Proctor, 1991; Schneider, 1997). Recommendations for deepening transparency are developed by
identifying successes and opportunities for improvement in contentious areas of debate where opacity
remains even when guidance for code availability and documentation are followed. This section examines
three case studies that provide illuminating examples of how opaque and contentious assumptions can be
key drivers of outputs but may be unknown to many stakeholders: discounting, uncertainty, and socioeconomic
distribution of impacts.

These case studies highlight how best practices for analysts could differ from strategies for other stake-
holders, which motivates recommendations in Section 3. They also illustrate opportunities for progress and
engagement between disciplines. Each is in a different state in its development of modelling standards, provid-
ing useful points for comparison and contrast. The first case – discounting and intergenerational equity – is a
longstanding debate where multidisciplinary interchanges and practices, like sensitivity analysis, have
emerged that are worthy of emulation. The second example – representing uncertainty – has been recognized
as influential but the modelling community still lacks robust guidelines to support analysis, despite a growing
literature offering practical guidance (e.g. Yue et al., 2018). The final example – the socioeconomic distribution of
impacts of climate damages – is an emerging issue where awareness is limited and opportunities exist to accel-
erate dialogue.

A common trait of the three cases is that disagreements about values and appropriate model representations
will persist for the foreseeable future. The anticipated lack of convergence is a feature of these debates and
makes the goals of transparency to general audiences (not only modellers) and availability of sensitivity analysis
imperative. An iterative approach to model development and application acknowledges that insights are provi-
sional, learning can provide openings for model refinement, and difficult-to-quantify dimensions of decision
problems should not be ignored. A second shared feature is that basic transparency (exemplified by open
access code and equation documentation) would fall short of the ultimate goal of deepening transparency,
including identification of important assumptions that drive recommendations, accessibility to interested deci-
sionmakers and stakeholder participation. In this way, these issues provide examples of how progress has been
made, and what is needed for deepening transparency beyond open-source guidelines.

2.1. Discounting: weighing costs and benefits over time and across generations

Evaluating policies with long-term effects requires comparing the immediate benefits and costs (relative to an
appropriate baseline) with those in the future. For benefit–cost analysis, these temporal tradeoffs are formalized
through the discount rate, which allows payoffs or impacts occurring at different times to be compared. Debates
over discounting in public policy have been contentious, especially in environmental economics where issues
like climate change have long time horizons that may span centuries (Goulder & Stavins, 2002; Nordhaus, 2007;
Stern & Taylor, 2007). A key question is whether the discount rate should be based on the rate of return on
private investments or derived from ethical principles about the relative weights of well-being at different
times (Arrow et al., 1996; Kelleher, 2017; Mintz-Woo, 2018). In energy models, discount rates often include
both ethical and investment-related discount rates or aggregate many effects like time preference, opportunity
cost of capital, risk, and/or financing, and differ by decisionmaker (Bistline et al., 2019). Over several decades,
debates about discounting have drawn contenders across academic disciplines from philosophy, to the
natural sciences, to economics (e.g. Arrow et al., 2014; Broome, 1994; Lind et al., 1982; Portney & Weyant,
1999). Given the large extent to which discounting parameters and selection principles affect outcomes and
policy prescriptions, transparency could not be more important.

The discounting debate offers lessons about the benefits of interdisciplinary exchange and transparency in
modelling decisions. This debate is a success story, but not because it yielded consensus about context-depen-
dent discounting practices. Rather, it has been successful because discounting has been extensively investigated
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for many decades across disciplines. Progress has been made in clarifying implicit assumptions, conducting sen-
sitivity analyses across a range of reasonable alternatives, and communicating implications of alternatives to a
range of stakeholders. These practices have the potential to increase the political legitimacy of decisions made
on the basis of these models (Fleurbaey et al., 2018; Wilkerson et al., 2013).

Highlighting lessons learned in the discounting debate can guide the move toward transparency and inter-
disciplinarity for other issues (Klein, 1990). For instance, consider the workshop held by the U.S. Environmental
Protection Agency, Department of Energy, Resources for the Future, Stanford University, and the Electric Power
Research Institute which led to the 1999 book edited by Portney and Weyant entitled ‘Discounting and Interge-
nerational Equity’ (Portney & Weyant, 1999). The workshop brought together leading experts on discounting
from different disciplines, and the book also offers one form of lasting documentation defining the contours
of the debate. Exchanges in this context have helped to uncover embedded assumptions that, while valid in
other settings, may be problematic for long-term policy issues with the complexity of climate change (e.g.
neglecting overlapping agents, problems of time inconsistency, limitations of a unitary decisionmaker with a
well-defined objective function).

A related example is the 2017 U.S. National Academies of Sciences report on models that estimate the social
cost of carbon (SC-CO2), such as those used by the U.S. Interagency Working Group (IWG) (NAS, 2017). Research-
ers provided commentary on the viability of the discounting assumptions used in U.S. government SC-CO2 esti-
mates, which is a metric used in regulatory impact analysis to account for net damages from climate change
associated with an incremental change in emissions. The discussion allowed for shortcomings in the IWG’s dis-
counting assumptions to be quickly diagnosed and provided guidance on the selection of parameters, such as
the pure rate of time preference and utility curvature (i.e. the relationship between additional wealth and
additional wellbeing), treating uncertainty in producing and applying ranges of SC-CO2 estimates, and combin-
ing SC-CO2 values from different integrated assessment models (IAMs) with other cost and benefit estimates.
The report also underscored the value in making models available and modular to encourage the ‘transparent
articulation of the inputs, outputs, uncertainties, and linkages’ (NAS, 2017, p. 9).

Despite progress in improving the transparency of discounting assumptions, many opportunities for progress
still exist. For instance, a recent Intergovernmental Panel on Climate Change (IPCC) special report featured IAM
scenarios to evaluate mitigation pathways compatible with limiting warming to 1.5 °C above pre-industrial levels
(IPCC, 2018). Although a publicly available scenario database was established for the special report, the models
did not conduct sensitivities to test the robustness of results to alternate assumptions about discounting, which
could alter the time pathway of mitigation options.3

Overall, discounting represents a success story of acting on salient ethical and behavioural issues in energy
and climate analysis. Disagreement in the research community encouraged standards for interdisciplinary
engagement, documenting assumptions, providing guidance on interpreting analysis, and testing the robust-
ness of results to a range of inputs. Importantly, to deepen transparency, it was not sufficient to merely
satisfy open-source guidelines – instead, much additional work involving interdisciplinary collaboration was
needed. Improving collaboration between disciplines by organizing interdisciplinary conferences and projects
is reproducible in other cases involving value-laden assumptions.

2.2. Uncertainty: assessing the impact of the unknown

Like discounting, uncertainty is a central facet in many energy and environmental economics problems. Unlike
discounting, however, the treatment of uncertainty may not be as simple as varying a parameter value but may
require structural changes to models and potentially a different conceptual paradigm, requiring analysts to
quantify values that are not traditionally in their purview like probabilities associated with outcomes (Bistline,
2014; Lempert et al., 2003; Pindyck, 2007). Uncertainty analysis illustrates why transparency is important not
only for the assumptions made about particular parameters but also for the presuppositions about structural
features of models, including omitted dynamics.

The characterization and analysis of uncertainty have received increased attention in the climate change
economics community in recent years. Although insuring against low-probability, high-impact risks has been
a longstanding argument for emissions mitigation (Manne & Richels, 1993), more recent work (e.g. Weitzman,
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2009) considers how uncertainty could impact the degree and type of precautionary action warranted to avoid
climate change impacts. Notwithstanding the importance of risk in climate policy and in long-lived investments
in the energy system, quantification and implementation of uncertainty in the modelling community has lagged
behind its acknowledged importance (Bistline, 2015a). Integrated assessment and energy models are largely
deterministic and focus on mean-valued outcomes, rarely incorporating uncertainty in the analysis to determine
hedging strategies. Although the assumption of risk neutrality is recognized to be problematic in regulatory con-
texts, guidance for benefit–cost analyses through the U.S. Office of Management and Budget directs agencies to
ignore these considerations (Kaufman, 2014).

Debates about work like Weitzman’s have led to reappraisals of the treatment of uncertainty in energy and
environmental models and, more generally, of how to conceptualize uncertainty and risk and their relation to
public policy (Bistline, 2015b; Hausman et al., 2016; Stirling, 2010; Tol, 2003: Walker et al., 2003; Weitzman, 2009).4

Trutnevyte et al. (2016) advocate for a scenario technique to capture multi-dimensional uncertainty, which
involves qualitative studies of model users to test scenerio effectiveness. Although these dialogues have thus
far been between economists, other domains of expertise can inform these deliberations, given how
decision-making under uncertainty involves important economic, ethical, and technical dimensions. For
instance, formulating, developing, and applying a stochastic IAM to inform climate policy might involve econ-
omists (to frame the decision problem), operations researchers (to overcome the computationally burdensome
nature of such complex problems), social scientists (to elicit probabilities and understand possible heuristics and
biases), philosophers (to inform the ethical and decision theoretic elements of the model and its use), and
climate scientists (to improve the representation of the climate system).

Although the importance of uncertainty is being increasingly recognized, the research community has not
settled on best practices, including:

. Selecting frameworks for uncertainty analyses like one-way sensitivity, scenario analysis, uncertainty propa-
gation, sequential decision-making under uncertainty (Kann & Weyant, 2000) and methods to test the sen-
sitivity of results to alternate frameworks before creating resource-intensive models (Bistline, 2015a)

. Selecting plausible scenarios and uncertainties, since a range of biases and heuristics may lead to a narrow list
of potentially relevant factors (Trutnevyte et al., 2016)

. Assigning probabilities to outcomes, which may depend on a specific decision problem but can be distorted
by biases (Kahneman et al., 1982)

. Communicating assumptions and results to stakeholders (Kahneman & Tversky, 2000)

2.3. Socioeconomic distribution of impacts: incorporating and evaluating effects across
socioeconomic boundaries

As discussed above, discounting provides a familiar example of the sensitivity of models’ recommendations to the
intergenerational distribution of costs and benefits, i.e. the distribution across time. Another distributional issue is
accounting for intra-generational costs and benefits within time periods across different countries and across
different income levels. Our focus in this discussion is on equity considerations between and within countries
related to large-scale climate policy.5 Distributional assumptions are embedded through a social welfare function,
which assigns value to outcomes within the model – e.g. when an optimal policy is calculated, this is the objective
function that ismaximized.Within the socialwelfare function, the choiceof its specific formandparametersmanifest
a choiceof attitudes toward the importanceofequity and justicewithin andacross generations. For example, a social
welfare function that focuses only on maximizing global gross domestic product would ignore the greater impor-
tance to poor and wealthy households of additional dollars of income, whereas alternative social welfare functions
have the ability to explicitly represent the diminishing marginal utility of income to the poor vs. rich, and thereby
manifest concern for distributional inequality. The latter welfare functions allow parameterization of a concern
for equity – when such a parameter is included, it is often called an ‘equity weight’ (Anthoff & Tol, 2010).

Despite the significance of these assumptions, distributional issues, unlike uncertainty, have not been the
focus of rigorous investigation and debate. Indeed, best practices have not yet emerged (as they have in the
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case of discounting). For example, estimates of the SC-CO2 aggregate monetized climate impacts over popu-
lations in different jurisdictions and incomes. When IAMs use different assumptions about the concern for
and liability toward citizens of other countries, marginal damage estimates from CO2emissions vary significantly
and hence offer different recommendations for climate policy (Anthoff & Tol, 2010; Budolfson et al., 2017;
Dennig et al., 2015). Although two of three models used to estimate the SC-CO2 by the U.S. government
have the structural ability to incorporate equity weighting between nations (Rose et al., 2014), equity is not
given important weight in any official government modelling reports, and equity receives little attention in
the SC-CO2 estimation literature (NAS, 2017).

Further, all of the leading SC-CO2 models lack the structure to perform equity weighting within nations,
because they lack the representation of inequalities in costs and benefits for a nation’s own citizens. As a
result, all of these models implicitly assume that mitigation costs and future climate damages are distributed
proportional to income within nations (Budolfson et al., 2017; Dennig et al., 2015). Identifying this implicit
assumption and quantifying its effects are important for deepening transparency.

3. Recommendations for deepening transparency

Building on these examples, we offer recommendations to inform and improve analysis by creating shared stan-
dards to encourage transparency for both modellers and non-modellers. The goal is to create opportunities to
accelerate the adoption of best practices to achieve results described in the discounting section sooner for a
range of audiences, especially in relation to contentious and value-laden assumptions. These proposed stan-
dards are modular and complementary to facilitate adoption, and we propose reforms that encourage transpar-
ency, but balance researchers’ time and effort with the value to the research community. Given the decision
relevance of energy and environmental modelling, each recommendation would be enhanced through stake-
holder participation (Reed, 2008). Strachan et al. (2016) provide suggestions on tailoring model-based analysis to
policymakers and creating iterative engagement structures between modellers, stakeholders, and other experts.
While Strachan et al. (2016) focus on improving the energy-modelling policy interface through transparency, our
recommendations call for a deeper level of transparency that draws out value-laden assumptions through inter-
disciplinary engagement as well as sensitivity analysis. Table 1 summarizes these recommendations, which are
detailed further below.

3.1. Recommendation 1: Additional sensitivity analysis and model diagnostics (rows 1–3 in Table 1)

Consumers of models, such as policymakers, industry, foundations, and other stakeholders, tend to look to pub-
lished research for guidance on policy issues. Although these are often knowledgeable and motivated audi-
ences, they are unable to devote considerable time and resources to learning and applying new models. In
light of this omission, modellers should routinely run additional sensitivities to test robustness of results to par-
ameters and structural assumptions, especially for value-laden or contentious model assumptions. Models
should be run with all possibilities for uncertain or contentious assumptions, which has become a standard prac-
tice for issues like discounting (Section 2.1) but not for ones like equity weights (Section 2.3). Such model runs
would allow consumers of model results to understand how alternate assumptions can impact recommen-
dations (Morgan, 2015; Morgan & Henrion, 1990; Pannell, 1997). These stress tests can increase confidence in
results and allow audiences with different values and beliefs to assess the reasonableness of model behaviour
under different domains. They also steer model improvements toward areas that have the greatest impact on
results.

DeCarolis et al. (2017) highlight how uncertainty analysis is a best practice in energy system optimization
modelling given uncertainties about future technologies and policies, but decisions about incorporating uncer-
tainty also have ethical dimensions, as discussed in Section 2.2. Encouraging a range of sensitivity analyses also
promotes long-run norms of flexibility in model development, and the ability to conduct many sensitivities
becomes a central design element, as the social cost of carbon example in Section 2 illustrates. As others
have pointed out (e.g. Strachan et al., 2016), models tend toward increasing complexity as features are
added but rarely removed. However, the expectation that reviewers for peer-reviewed articles and policymakers
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will ask for many dozens of cross-sensitivities should encourage modelling teams to lower the computational
cost of running their models by creating modular code where complexity can be tailored to the analysis
(Cole et al., 2017).6

Sensitivity analysis, when paired with probability distributions that reflect expert judgment or empirical esti-
mates, can provide guidance about the value of more detailed research (Bistline, 2015a). Given how modelling
approaches that explicitly incorporate uncertainty into decision-making are resource intensive to create and
computationally costly to run, it is important to use metrics like the value of the stochastic solution to test
the sensitivity of results to alternate frameworks before creating more complex models (Bistline, 2015a), as
described in Section 2.2. Modellers should ensure that a reasonably complete range of uncertainty is captured.
For example, a one-way sensitivity, where a single parameter is varied at a time, is the de facto choice for many
modellers, but a multi-dimensional sensitivity analysis is often required to diagnose interactions between

Table 1. Examples of best practices and levels of engagement to encourage transparency. Column categories of ‘Shallower’ through ‘Deeper’ are
ordered by increasing depth of transparency.

Shallower Deep Deeper

1. Additional
Sensitivity Analysis

Analysis performs sensitivities to
the most important unknowns
and acknowledges sensitivities
that are not performed

Analysis provides a range of
sensitivities to important parameters
and structural assumptions, including
potentially value-laden or
contentious ones

Analysis provides a range of sensitivities;
value-laden assumptions highlighted,
defended, and discussed; other
venues for broader engagement (e.g.
interactive websites, clarifying policy
implications)

2. Model Diagnostics Limited model diagnostics
performed to test model
robustness but not made public

Limited model diagnostics performed
and made public

Comprehensive diagnostics performed
for all reasonable alternatives, publicly
available report, and updated
periodically

3. Uncertainty Uncertainties clearly
acknowledged but not formally
characterized or analyzed

Uncertainty characterized (through
statistical methods, elicited expert
judgments, or other approaches) but
not formally incorporated

Uncertainty characterization, analysis,
and communication

4. Methods
Transparency

White paper Peer-reviewed Peer-reviewed with periodic updates;
other venues for broader engagement
(e.g. crowdsourcing and collaborative
websites) with value judgements
highlighted and discussed

5. Data Transparency Documentation cites sources for
data and mentions whether they
are available

Sources cited and data available by
contacting authors

Sources cited and data posted to trusted
repository with guide to non-
modellers for use and possible
limitations; quality assurance
procedures

6. Code Transparency Detailed documentation of model
equations and implementation

Model code available on a trusted
repository, enabling independent
replication

Model code publicly available,
extensively commented for other
users, and documentation available
for less experienced modellers with
value judgments discussed; external
verification

7. Interdisciplinary
Engagement

Incorporate information from
multiple disciplines

Multidisciplinary teams conduct
analysis

Interdisciplinary research teams
(including social scientists and
ethicists) conduct analysis, elicit
feedback, and communicate results to
stakeholders; robust exchange about
contested assumptions, with emphasis
on value-laden assumptions (e.g.
conferences, special journal issues)

8. Model
Intercomparison
Projects

Qualitative comparison of model
structures and assumptions

Qualitative comparison coupled with a
quantitative comparison of model
outputs, including harmonized input
assumptions (to isolate impacts of
model structure)

Qualitative and quantitative
comparisons with harmonized inputs;
comprehensive assessment of
differences in model inputs and
outputs, including ethical implications;
periodic reassessments with
interdisciplinary teams; venues for
broader engagement
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parameters when varied simultaneously. Additional sensitivities also help to ‘future proof’ an analysis as con-
ditions change and increase the relevance of results even when technological or policy-related surprises
unfold. For instance, solar power costs have plummeted in recent years and have exceeded even optimistic fore-
casts (Creutzig et al.., 2017). However, the scenarios in Working Group III of the IPCC’s Fifth Assessment Report
did not span ranges that included these trends (Kriegler et al., 2014). Large ensembles of scenarios can enable
more robust decisions by offering a wide range of perspectives rather than an ex ante specification of a limited
set of likely futures and can avoid conveying undue precision in the ability to understand structural and para-
metric uncertainties (Bistline & Young, 2020; Eshraghi et al., 2018). As discussed in Section 2.2, sensitivity analysis
should be complemented by techniques for uncertainty analysis such as stochastic or robust optimization.

Ideally, source code should be made available with sufficient documentation to allow other researchers to run
the code to explore the robustness of conclusions. When such arrangements are infeasible, modellers should
provide a basic set of sensitivities themselves. Modellers should always be sensitive to potential blind spots in
their analysis. Allowing other researchers to conduct verification exercises and stress test their work should be
a welcomed method for efficient progress, replication, and self-correction. One way to encourage more robust
uncertainty analysis is to create standard scenarios that modelling groups routinely run and update each year
to track how model insights change with model development and as input assumptions change. Lessons
learned are identified by comparing outputs across time and with actual market dynamics (NREL, 2018).

Sensitivity analysis can be helpful for communicating the role of value-based assumptions in models to non-
experts. However, altering the discount rate, for example, can yield a broad range of modelling outcomes,
seriously complicating the communication of model insights. Exposure to these complications may lead non-
experts to question the utility of model analysis in the first place. In reply to this objection, we think that
using sensitivity analysis can help to educate non-experts about the usefulness of models for helping to under-
stand the implications of disagreements over value judgments on outcomes. As Strachan et al. (2016) point out,
policymakers struggle to assess different insights from competing models as it is. Using sensitivity analysis to
distinguish different value-based assumptions could actually help non-experts gain confidence in the utility
of models for making decisions, especially in the context of contentious debates.

3.2. Recommendation 2: Better model documentation (beyond equations) to enable open
communication across audiences and disciplines (rows 4–6 in Table 1)

One purpose of a model is to convey expert knowledge without the expert present. This objective cannot be
advanced without proper documentation. Public engagement and deliberation require information, which is a
particularly important component of the energy and environmental modelling process given strong public
policy dimensions related to climate change, energy poverty, and economic development. As the first line of
defense against sloppy analysis or misinterpretation of insights, modellers should adopt a leading role in commu-
nicating not only the assumptions of what is in a model but also what is left out, especially for issues whose impor-
tance is not yet sufficiently recognized. Deliberations about model design decisions are frequently omitted even in
detailed documentation, and the existence and consequences of these decisions may be unknown to consumers
and users of models. These omissions may have serious consequences when design decisions involve widely dis-
agreed upon questions about ethics and value. Documentation allows audiences to understand modeller judg-
ments and drivers of results to evaluate the reasonableness of assumptions and structures.

Journal policies can encourage transparency and rigorous documentation (Nosek et al., 2015). Top-tier jour-
nals in economics and political science now often require software code and data availability (Gertler et al.,
2018), which is a critical step but does not go far enough to convey limitations to non-expert audiences and
fails to highlight contentious value-laden assumptions. Thorough documentation is not necessarily a substitute
for making model code available, which is needed to replicate numerical results. However, in light of competi-
tiveness and intellectual property concerns, thorough documentation combined with sensitivity analysis can
provide a basis for independent verification of research findings (i.e. replication of higher-level insights using
the same assumptions but different modelling platforms). Furthermore, publishing analysis in peer-reviewed
journals helps to strengthen the link between modelling choices and accountability. Replication using
different platforms encourages feedback and sometimes collaboration between research groups. In addition,
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scholars from other disciplines can then more easily leverage existing models to explore further interdisciplinary
research that addresses further questions with novel extensions of existing methods. For example, William Nord-
haus’s open-source posting of his models with extensive documentation, including of conceptually and philo-
sophically contentious assumptions, has allowed other researchers to efficiently test the sensitivity of its policy
recommendations to alternative assumptions (see for example Budolfson et al. (2019); Budolfson et al. (2017);
and Scovronick et al. (2017)). Independent replications could be incentivized by creating special issues and dedi-
cated journals that publish these studies (which have been emerging trends in recent years) and by having repli-
cations rewarded by funding agencies.7

Documentation of a model’s structure and assumptions should be provided at different levels of detail to
match the needs of different audiences. Current guidance focusing on model formulations may be useful for
other modellers but not for other stakeholders. These different audiences require additional targeted documen-
tation, as DeCarolis et al. (2012) and Pfenninger et al. (2017) point out. But the degree to which assumptions are
discussed (and sensitivities tested) should be application-specific and should coincide to the degree to which
these assumptions change decisions (Füssel, 2007). For instance, as discussed in Sections 2.2 and 2.3,
omitted model considerations like risk and distributional impacts can be as important as features included in
models, so documentation should apportion greater space to highlighting these issues even where they are
not addressed directly. Documentation should also point out which structural and parametric uncertainties
are due to unknowns about future values (e.g. solar PV capital costs), system dynamics and behavioural assump-
tions (e.g. consumer tradeoffs between vehicle purchase price and lifetime fuel/maintenance costs), and societal
choices/preferences (e.g. policy design and implementation).

Another function of transparency is to provide recourse and accountability for the quality of model develop-
ment decisions. Many energy and sustainability models cannot be validated in the same way that physical
sciences models can (DeCanio, 2003). This means model quality is not determined by predication accuracy
(i.e. discrepancies between select scenario outputs and observed states of the world). Rather, assessments of
model value require technical domain expertise as well as transparency in model structure and assumptions.
For instance, electric sector models determine generation shares of different technologies under assumptions
about future markets, policies, and technologies. Although forecasts of parameters impact model outcomes,
results are also driven by structural features of models like their spatial and temporal resolutions (Mai et al.,
2018).

Documentation should not be cloaked in domain-specific jargon, as the over-reliance on technical language
erects barriers to interdisciplinary collaboration. Howells et al. (2011) argue for documentation with a ‘plain
English description’ to explain engineering and economic concepts of energy systems models to non-modelling
audiences, but such recommendations are just as applicable for value-laden issues and ethically contentious
assumptions. For instance, Negishi weights, when mentioned in model documentation at all, are often described
in economic terms (e.g. equalizing the shadow price of capital) instead of in relation to their equity implications.
A ‘plain English description’ of Negishi weights would include discussion that locates their ethical assumptions
among alternative answers to contentious questions about equity, and highlights their implications when used
within models, such as valuing lives lost in poorer nations less than lives lost in richer nations (Stanton, 2011).

A linked recommendation is not only to produce clear model documentation but also to communicate
findings through several channels that are tailored to the needs of different audiences. This strategy can be
as simple as creating an executive summary to accompany a lengthy report, a video abstract to accompany
a journal article, or a summary for policymakers to supplement modelling efforts. Recent examples of such out-
reach are the targeted summaries of the IPCC Special Report on Global Warming of 1.5 °C, such as the summary
for teachers (OCE, 2018). Researchers at University College London, in the UK, have developed animations to
explain UK energy models to broad audiences (UCL Energy Institute, 2017).

3.3. Recommendation 3: Greater discussion across modelling groups and other disciplines, especially
through model intercomparison projects (rows 7–8 in Table 1)

So far, our recommendations concentrate on how single modelling groups can deepen transparency. The third
recommendation explicitly requires increasing communication across the modelling community and other
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disciplines. One encouraging option is the development of an entirely new discipline, ‘Macro-Energy Systems’
(Levi et al., 2019), which would pull into a single field researchers who currently work on energy systems in mul-
tiple disciplines and often publish in separate journals. The creation of Macro-Energy Systems as a discipline also
has promise for improving discussion on ethical issues related to energy, as it presents an institutional platform
to directly involve researchers in the humanities and social scientists in modelling projects.

Model intercomparison projects (MIPs) are coordinated multi-model exercises used to understand differ-
ences across data, methodologies, and outputs and have been used in a variety of fields like climate science
and energy modelling (Weyant, 2017). MIPs can identify robust insights that hold across a range of models
and analytical strategies and highlight areas of disagreement to guide future research (Parson, 1995). They
provide a means for benchmarking and self-correction to adopt best practices and to follow the most productive
research directions. These multi-model studies also establish a credible expectation among modellers that their
research will be replicated across independent platforms and discourage decisionmakers and journalists from
succumbing to ‘single-study syndrome’. MIPs provide a transition from static, fragmented studies published
by a single research group to open-ended collaborative commentaries that are dynamically updated, extended,
and linked, incorporating perspectives from a range of relevant disciplines. A virtue of modelling is to provide a
platform for communicating across disciplinary boundaries by transparently harmonizing and organizing con-
sistent mathematical representations of disciplinary knowledge into a common accounting framework. Formal
MIPs also increase incentives for collaboration with the potential to provide better alignment between individ-
ual and communal incentives, including increasing citations for model intercomparisons, replications, code, and
null results (Nosek et al., 2015). In encouraging broad participation, multi-model studies benefit from having
diverse models and perspectives represented, especially when groups are willing to spend time systematically
investigating inputs and outputs to understand the degree to which differences are due to input assumptions or
to model structure (Mai et al., 2018).

For energy and environmental models, as noted in Section 2.1 above, venues like Stanford University’s
Energy Modeling Forum have historically facilitated meetings and studies to focus on specific research topics
(Huntington et al., 1982). Interdisciplinary collaborative commentaries encourage model transparency and
can investigate the sensitivity of recommendations to a range of assumptions and structures while discussing
issues behind the assumptions, which can lead to the identification and clarification of questions for future
research (Edenhofer et al., 2006). The optimal size of these MIPs depends on the particular research question
and available resources, as smaller comparisons facilitate deeper investigation of factors driving results (Cole
et al., 2017) while larger studies provide a broader ‘lay-of-the-land’ (Bistline et al., 2018). Although larger
studies are often open to any interested modelling groups, financial resources may constrain participation
from a wider variety of institutions and fields, so to encourage broader perspectives, public funding should
be earmarked for their participation in collaborative studies.

Researchers both in multi-model studies and single-model efforts can deepen transparency by finding crea-
tive approaches to engage stakeholders and increase accessibility. For instance, crowdsourcing and collabora-
tive websites offer open-ended forums for resources, discussion, and documentation and allow stakeholders
with diverse backgrounds to deliberate alongside modellers (Bazilian et al., 2012). These repositories also
provide important training functions for analysts to be alert to ethically sensitive dimensions of models, and
the collaborative norms fostered by crowdsourcing could have positive spillover effects for other researchers
and the public. A second approach to enhance communications is to create interactive websites for the
public to allow interested laypeople to see how results change with different assumptions (MIT, 2009; U.S.
EIA, 2018). These websites allow audiences to ask better questions of experts and modellers, while testing
the robustness of conclusions.

4. Conclusion and policy implications

Important societal issues are increasingly informed by quantitative modelling that requires interdisciplinary col-
laborations. For instance, in the post-Paris Agreement era, as pressure mounts to mitigate climate change while
simultaneously achieving the broader SDGs, more and more climate and energy modelling groups are taking
centre stage and making their data and equations public (Hurrell et al., 2013; Pfenninger et al., 2018). Although
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this transparency can improve the scientific process, policy decisions, and dissemination of insights, we argue
that it is especially in the context of difficult policy decisions that the need for transparency extends beyond
making data, equations, and model documentation merely openly available. Deeper transparency requires
making structural assumptions explicit, creating opportunities for interdisciplinary engagement, and communi-
cating value-laden assumptions to policymakers, foundations, and other stakeholders.

Ultimately, energy and environmental modellers must allocate their time and resources across a portfolio of
activities, such as documenting models and making their code available, new model development (and enhan-
cing model fidelity to conduct cutting-edge research), applying models in new settings, and communicating
results. Some efforts are synergistic, while others create competing claims on scarce time, but all of these activi-
ties can foster positive norms within the modelling community in distinct ways. Individual modelling groups
must find a balance that works in light of their unique strengths, audiences, preferences for how they spend
their time, as well as public and private returns to additional research effort. There is unlikely to be a single
correct portfolio of transparency practices for all modelling groups in all contexts. As we describe, transparency
can be enhanced through model documentation, application, and communication. But given the range of sta-
keholders who do not have the time or expertise to delve into code, it is important to consider how model appli-
cation and communication can make science more accessible to these audiences.

Deepening transparency about modelling assumptions – especially for potentially value-laden assumptions –
is urgently needed in scientific contexts that use modelling to advise policy decisions, including energy and
environmental models that inform decisions on climate change, as well as local pollution abatement, biodiver-
sity conservation, and agriculture-related policymaking. Making analytical tools as transparent as possible can
help to communicate insights to a broader range of stakeholders while appropriately conveying strengths, limit-
ations, and assumptions about value to avoid misinterpreting results.

Notes

1. Recommendations include getting consent from intellectual property holders, choosing a platform, identifying publishable
content, choosing a license, considering programming languages and frameworks, and building a community of users.

2. The replication crisis in disciplines like the social sciences have led to recommendations for better practices and changing
research norms (Gertler et al., 2018), and although many suggestions are applicable for energy and environmental research,
replicability is only a subset of transparency-related issues associated with prospective structural models that are the focus of
this manuscript.

3. See Emmerling et al. (2019) for further discussion on the effect of the discount rate for setting climate change policy targets.
4. This discussion focuses on quantitative evaluations of uncertainty. However, we acknowledge much could be learned by

improving collaborations between quantitative and qualitative research projects. Qualitative methods designed to engage
broader stakeholder perspectives in the context of multiple uncertainities through, for example, NUSAP (Numeral Unit
Spread Assessment Pedigree) workshops can also improve transparency and make value-laden assumptions more evident
to in energy and environmental assessments (Van Der Sluijs et al., 2005; Petersen et al., 2011; Pye et al., 2018). However,
we would argue that these projects fall short of deepening transparency by focusing more on stakeholder involvement
than on collaboration between research groups and across disciplines.

5. For discussion of intra-country scale distributional analysis concerning the transition to low carbon energy, see Fell et al. (2019)
and Oswald et al. (2020).

6. A compelling case could be made that there are too many energy models (Sarewitz, 2018) and that requiring open-source
code will increase the cost of creating new models and therefore decrease the supply. However, while larger and well-
resourced incumbents would likely be able to comply with these restrictions (Lange & Redlinger, 2019), the models that
are more likely to be materially impacted would be smaller groups with more limited resources, and there may be strong
equity arguments in favour of having these perspectives included in broader dialogues about energy and sustainability.

7. Governments may also have a role to play in improving model documentation requirements. For example, the UK has created
a quality assurance manual that applies to government analysis (H.M. Treasury, 2015).
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